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Abstract

This report presents discrete-expansions (DE) for tri-linear reconstruction fields. These fields
approximate a continuum using piece-wise, cell-based interpolation throughout a grid. In contrast
to a Taylor’s series, DEs accurately model a reconstruction field’s change across cell boundaries
where continuity of multi-linear interpolant derivatives is not guaranteed. Seven new DEs are
developed herein by parametrically integrating the tri-linear interpolant’s total-differential
between two positions located in separate cells. One of the new DEs, extending between non-
contiguous cells, is then demonstrated to exactly predict the change in the tri-linear reconstruction
of a non-linear continuum. Together with previous efforts, a full set of DEs is now available for
the most commonly used 1-D, 2-D and 3-D linear and multi-linear reconstruction fields.
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Discrete-Expansions for Tri-Linear Reconstruction Fields
J. S. Brock, Los Alamos National Laboratory and P. D. Dufek, Northern Arizona University

Introduction

Numerical solution methods for partial-differential equations (PDE) that involve continuum
fields generally combine various numerical tools [1]. Intertwining distinct numerical techniques,
however, may unknowingly produce incongruous numerical solvers. One tool frequently used to
develop and conversely to analyze numerical PDE solvers is the Taylor’s series expansion (TSE)
[2]. Another tool often used within numerical PDE solvers is discrete-field reconstruction, which
is the use of piece-wise, cell-based interpolation throughout a discretized continuum field [3,4]. A
TSE applied within a multi-linear reconstruction field, i.e. a TSE of the cell-based interpolant,
however, is rendered functionally impractical because the guaranteed continuity of piece-wise
linear, bi-linear and tri-linear interpolation is limited to a single computational cell. This report
presents a novel numerical technique, termed herein a discrete-expansion, that remedies the
mathematical incompatibility between the TSE and tri-linear reconstruction fields.

One feature within many numerical PDE solvers is describing a spatially-variable function’s
change between coordinate positions. A TSE models these changes as one-point extrapolation;
given a function and its derivatives at one point, a TSE predicts the function’s value at a second
position. TSEs are approximations whose accuracy depends upon the number of terms included in
the series expansion. More importantly, a TSE is limited to regions wherein the function and all of
its derivatives are continuous. A TSE is then confined to one cell for multi-linear reconstruction;
while these piece-wise fields are continuous along cell edges, continuity of their derivatives is not
guaranteed across cell boundaries. The use of TSEs within multi-linear reconstruction fields is,
therefore, so severely limited as to render them functionally impractical, or conversely their
explicit combination imparts a unique error into computational simulations.

A discrete-expansion (DE) is another numerical tool that can model the change in a spatially-
variable function between coordinate positions [5-13]. In contrast to a general TSE, a DE is
tailored for use within reconstruction fields. A DE is a two-point relationship that acknowledges
the full functional dependence of piece-wise interpolation; it includes changes in both cell-based
coordinates and discrete-field data between expansion end-points. A DE is not an infinite series,
but instead contains a limited number of terms. Most importantly, a DE properly accounts for
discontinuous interpolant derivatives across cell boundaries and, thus, these expansions are exact
throughout the computational domain. A DE is then functionally practical since it can be applied
across cell boundaries. Indeed, DEs accurately describe reconstruction-field changes between any
two domain coordinates, even positions located within non-contiguous grid cells.
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Some DEs have been developed for linear and multi-linear reconstruction fields in one, two
and three dimensions. Two methods were used to obtain these expansions: a mathematically
rigorous total-differential technique that inherently provides multiple expansions [8-13], and a
finite-difference method that is simple but requires a-priori knowledge of the solution [5-7].
Using the total-differential method, DEs have been developed for linear interpolants in 1-D line-
elements [8], 2-D triangles [9-13] and 3-D tetrahedrons [11-13]. The total-differential method
was also used to develop DEs for bi-linear interpolation in quadrilateral cells [8,10]. The finite-
difference method, however, only produced a single DE for tri-linear interpolation in hexahedral
cells [5-7]. Other possible DEs for tri-linear reconstruction fields were then overlooked.

The objective of the present effort was to obtain many DE variants for tri-linear reconstruction
fields using the total-differential development method. A full set of DEs would then be available
for the most commonly used 1-D, 2-D and 3-D linear and multi-linear interpolants. This report
continues by reviewing tri-linear field reconstruction within hexahedral cells. The total derivative
for multi-linear interpolants, including coordinate and field-transformation matrices, and its
parametric integration are then described. Seven DEs for tri-linear field reconstruction are then
developed. One DE, defined between positions within non-contiguous cells, is then demonstrated
for the reconstruction of a non-linear continuum field. Finally, a summary concludes this report.

Tri-Linear Field Reconstruction

Three-dimensional computational space is often discretized into non-orthogonal hexahedron
cells, particularly around complex geometries. A tri-linear function is generally used in these cells
for isoparametric interpolation, i.e. transforming a spatial coordinate system and reconstructing
discretized continuum-field data [4]. Spatial transformation involves mapping the cell geometry
from a physical, , to a cell-based logical, , coordinate system. See
Figure 1. While the cell’s vertices are arbitrarily located in physical space, the hexahedron’s
transformed coordinates are bound within the cell;  is bound when each ,  and .

Reconstructing a continuum field from cell-based, discrete data involves the joining of piece-
wise interpolation within every cell of the computational domain. Herein, the continuum field is
represented as , where its vector components are . Interpolation produces an
approximate but continuous mapping of discrete data, often stored at cell-vertex (cv) coordinates,

, to any position within the cell. The discrete-field data are assumed to be exact at cell-
vertices: . The continuum field is then modeled as the reconstructed field within
each computational cell, , and a discretization-error as presented in Equation 1.

(1)
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As shown in Equation 1, multi-linear interpolation is functionally dependent upon  and .
For tri-linear interpolation,  may be expressed as eight sub-vectors, each corresponding to a
hexahedron vertex: . More importantly, Equation 1 indicates
that field reconstruction incurs a discretization error. This error is avoided if  is linear. In
contrast, when  is non-linear, multi-linear interpolation is second-order accurate, ,
where  represents a characteristic length scale of the computational cell.

Tri-linear interpolation is expressed in Equation 2 as a linear summation of cell-vertex values,
, weighted by basis functions, , where  indicates the hexahedron’s vertices.

(2)

An expanded formulation for tri-linear interpolation as applied within hexahedron cells, one
that explicitly defines the eight basis functions, is presented in Equation 3.

(3)

While multi-linear interpolation is linear with respect to the cell-vertex vector, , the basis
functions are non-linear with respect to the logical coordinates ,  and .

Total Differential

The objective herein is to model the finite change in the continuum field, , using a tri-
linear reconstruction field, . DEs approximate  by relating the finite change of
the reconstructed field, , the cell-based logical coordinates, , and the cell-vertex vectors,

. The tri-linear interpolant’s total-differential provides a relationship between infinitesimal
changes of these three vectors, , as presented in Equation 4.

(4)

Integration of this expression between expansion end-points, State 1 and State 2, will provide
the desired functional relationship, , for use within numerical PDE solvers.

ξ u
cv

u
cv

u
cv

u
0

u
1

u
2

u
3

u
4

u
5

u
6

u
7

, , , , , , ,( )
T

=
u x( )

u x( ) O h2( )
h

u
v

ϕv ξ( ) v 0 … 7, ,=

u ξ u
cv

,( ) ϕv ξ( ) u
v

v 0=

7
∑=

u ξ u
cv

,( ) 1 ξ–( ) 1 η–( ) 1 ζ–( ) u
0

1 ξ–( ) 1 η–( ) ζ( ) u
4

+=

ξ( ) 1 η–( ) 1 ζ–( ) u
1

ξ( ) 1 η–( ) ζ( ) u
5

+ +

ξ( ) η( ) 1 ζ–( ) u
2

ξ( ) η( ) ζ( ) u
6

+ +

1 ξ–( ) η( ) 1 ζ–( ) u
3

1 ξ–( ) η( ) ζ( ) u
7

+ +

u
cv

ξ η ζ

∆u x( )
∆u ξ u

cv
,( ) ∆u x( )

∆u ∆ξ
∆u

cv

du f dξ du
cv

,( )=

ud
u ξ u

cv
,( )∂

ξ∂
------------------------ ξd

u ξ u
cv

,( )∂

u
cv

∂
------------------------ u

cv
d+=

∆u f ∆ξ ∆u
c v

,( )=



LA-UR-03-8338

4

Coordinate-Transformation Matrix
The tri-linear function’s total-differential, Equation 4, includes two first-order interpolation

derivatives or transformation matrices that are scaled by differential vectors. Each derivative, and
its matching differential vector, corresponds to one of the two arguments in the multi-linear
interpolant: . The first interpolation derivative in Equation 4 represents a coordinate-
transformation matrix: . This matrix corresponds to the transformation of the
continuum field from a physical coordinate system, , to local, cell-based logical coordinates, .
The square structure of this matrix is illustrated in Equation 5 for a 3-D transformation.

(5)

The size of the coordinate-transformation matrix is set by the number of spatial coordinates.
Elements of this matrix are most easily expressed as column vectors, ,  and ,
which are presented in Equations 6, 7 and 8 for tri-linear interpolation. The first column vector
within the coordinate-transformation matrix, , is presented in Equation 6.

(6)

The second column vector within the coordinate-transformation matrix, , is
presented in Equation 7.
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The third column vector within the coordinate-transformation matrix, , is
presented in Equation 8.

(8)

The coordinate-transformation matrix is dependent upon both  and : . As
shown above, the column vectors of this matrix are linear combinations of weighted cell-vertex
vectors. The weighting functions, however, are non-linear with respect to ,  and .

Field-Transformation Matrix
The second derivative in the tri-linear interpolant’s total-differential, Equation 4, represents a

field-transformation matrix: . This matrix corresponds to the transformation of
continuum fields, , into discrete-data fields, . The matrix structure
of  is defined in Equation 9 for spatial discretization into hexahedron cells.

(9)
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The square structure and size of  are similar to the coordinate-transformation matrix.
The field transformation’s sub-matrices, however, are diagonal. These diagonal elements are most
easily presented for each cell-vertex position as presented in Equation 11.

(11)

The derivatives ,  and  are equivalent, and they are identical to the
tri-linear interpolant’s basis functions. Each field-transformation sub-matrix may then be
expressed as the identity matrix scaled by a basis function, as presented in Equation 12.

(12)

The derivatives in Equation 11 are non-linear with respect to ,  and . In contrast, the
field-transformation matrix is independent of . Since multi-linear interpolation is linear with
respect to , its first derivative with respect to the cell-vertex vector removes any dependence
upon . The field-transformation matrix is then solely dependent upon : .

Simplified Total-Differential
Considering the reduced functionality of a tri-linear interpolant’s first-order derivatives with

respect to  and , its total-differential can be simplified as presented in Equation 13.
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(13)

Integration Method

Integrating the tri-linear interpolant’s total-differential, Equation 13, provides the functional
relationship required of DEs: . The integration limits correspond to expansion
end-points: State 1, , and State 2, . For the practical use of DEs
and to distinguish them from a TSE, the expansion end-points must be located in separate cells,
i.e. . Indeed, for the general use of DEs, the two cells should not be joined in physical-
space. See Figure 2. For a DE to be widely applicable, however, the computational domain must
be comprised of identically formed cells wherein the same interpolant is used for reconstruction.
Integration of the tri-linear interpolant’s total-differential is represented in Equation 14.

(14)
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multi-linear interpolants, solution of Equation 14 in one cell is then straightforward; their
derivatives are guaranteed to be continuous within this region. In contrast, if the limits of
integration cross a cell boundary, solution of Equation 14 is more complex.

The TSE and total-differential are both constrained to regions wherein the function and its
derivatives exhibit certain levels of continuity. As discussed above, this constraint nullifies the
use of TSEs within multi-linear reconstruction fields. Furthermore, as one-point extrapolation of

, the TSE’s formulation is fixed; the expansion is used without modification. In contrast,
a total-differential can not be used directly to model , rather it must first be integrated.
Fortunately, the required integration process, which converts the differential 
into a usable, finite-difference expression, , also provides an opportunity to
circumvent the continuity constraint. Using an interpolant’s total-differential to develop DEs is
then possible, but only after careful integration of Equation 14 across cell boundaries.

Solution of Equation 14 between coordinates located in separate but adjoining cells involves
integrating the interpolant’s total-differential through two different coordinate systems. While the
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distinct cell-vertex vectors. Along their common cell-edge, the two interpolants are continuous
but their derivatives are generally discontinuous. A total-differential is then not valid along any
integration pathline that crosses cell boundaries. DEs between coordinates within separate cells,
either contiguous or non-contiguous cells, can then only be obtained from Equation 14 if the
pathline is partitioned or if the integration coordinate-space is appropriately parameterized.

An integration pathline that passes between adjoining cells may be partitioned into two line-
segments, each defined in separate coordinate systems. The integrals in Equation 14 are similarly
partitioned into cell-based segments along which the interpolation derivatives are guaranteed to
be continuous. Integration along this two-segment pathline would then proceed within the first
cell from State 1 to the cell boundary, then within the second cell from the common cell-edge to
State 2. While this integration procedure represents a valid method of solution for Equation 14, it
is algorithmically complex and computationally expensive. Furthermore, when expansion end-
points are located within non-contiguous grid cells, partition of the integration pathline through
the multiple intermediary computational sub-domains is prohibitively complex and expensive.

Parameterization
Alternatively, the coordinate-space between the limits of integration can be parameterized.

Solution of Equation 14 across boundaries of adjoining cells fails in general because it requires
integrating unique interpolation functions through separate coordinate systems. Parameterization
removes the concept of multiple coordinate systems by creating a single coordinate-space
between the expansion end-points. While the form of the parameterization function is arbitrary,
continuity of the parameterized interpolation derivatives must be guaranteed along the entire
integration pathline. A parameterized total-differential may then be integrated directly, without
requiring partition of the integration pathline into cell-based line-segments.

Parameterization involves creating a new coordinate-space between two positions. Since
expansion end-points are a collection of interpolant, logical-coordinate and cell-vertex variables,
each of these vectors must be parameterized. A simple, linear parameterization technique using
the variable ‘s’, where , was used in this research. The parameterized variables, ,

 and , then vary linearly along any integration pathline between two coordinates. The
limits of integration for the parameterized total-differential are transformed from expansion end-
point state-variables into zero and unity. Integration of the parameterized total-differential for tri-
linear interpolation, with appropriate limits of integration, is represented in Equation 15.
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Solving Equation 15 requires an integration pathline. While the parameterization function
does not determine this pathline’s shape, it does define the parameterization variable’s behavior
along any path between the expansion end-points. The only restriction on the limits of integration
are that the end-point variables form a consistent set of vectors as described by .
Parameterization transforms the multi-variable integration process, involving each element in the

 and  vectors, to a one-dimensional problem with respect to the parameterization variable.
Cell-based coordinate systems are then irrelevant, and the integration limits may be any positions
within the discretized domain, including two coordinates within non-contiguous grid cells.

The remaining solution process for Equation 15 requires a specific integration pathline
between the expansion end-points. For the parameterized total-differential, an integration pathline
traverses through the  plane because these two vectors are the arguments for tri-linear
interpolation: . Three pathlines were selected by this research to solve Equation 15.
The direct, upper-step and lower-step pathlines are shown in Figure 3. Solving Equation 15 using
these pathlines produces many unique, but analytically equivalent DEs for tri-linear interpolation.

Direct Integration Pathline
The first integration pathline used to solve Equation 15 is a straight or direct line between

expansion end-points, State 1 and State 2. See Figure 3. The parametrized variables vary linearly
along this direct pathline, and reduce to the expansion end-points at the bounding limits of
integration. These parameterized variables are presented in Equation 16.

(16)
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, , and . Integration of the parameterized total-
differential along the direct pathline can then be simplified as presented in Equation 18.

(18)

The parameterized transformation matrices,  and , are
formed by substituting  and  from Equation 16 into Equations 6, 7, 8 and 11. These
derivatives are non-linear with respect the parameterization variable, but they involve constant
end-point vectors: , ,  and . Solution of Equation 18 is then straightforward. The one
DE most easily obtained using the direct integration pathline is presented in Equation 19.

(19)

The DE in Equation 19 is a combination of scaled transformation matrices and higher-order
interpolation derivatives. Arguments of the interpolation derivatives include average logical-
coordinate and cell-vertex vectors:  and . The arguments
of the second-order derivatives also include the difference in cell-vertex variables, . The
transformation matrices are scaled by finite-difference vectors of the logical-coordinate and cell-
vertex variables:  and . In contrast, the higher-order interpolation derivatives are
multiplied by various combinations of the scalar finite-differences ,  and .

Upper-Step Integration Pathline
The second integration pathline used to solve Equation 15 is comprised of two line-segments

between State 1 and State 2. The first segment is a line of constant  from State 1 to State A. See
Figure 3. State A combines State 1 logical-coordinates and a State 2 cell-vertex vector:

. The second pathline segment is a line of constant  from State A to State 2.
These two pathline segments form an upper-step in the  plane. The parametrized variables
vary linearly along each pathline segment, and reduce to the expansion end-points at the bounding
limits of integration. These parameterized variables are presented in Equations 20 and 21.
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(20)

(21)

The upper-step integration pathline does not constitute cell-based partition of the original,
non-parameterized total-differential. Instead, this pathline is used to integrate the parameterized
total-differential, which is not dependent upon cell-based coordinate systems. Along the upper-
step pathline, State A represents an arbitrary but convenient position within the  plane
between State 1 and State 2. Integration of the non-parameterized total-differential, however, can
be rewritten to simulate the upper-step integration pathline as presented in Equation 22.

 (22)

Using the upper-step pathline, integration of the parameterized version of Equation 22 is
represented in Equation 23, where the interpolation derivatives are appropriately labeled.

(23)
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Along each segment of the upper-step integration pathline, one of the parameterized
arguments is held constant, while the others vary linearly between end-points. Derivatives of the
parameterized arguments are then either the null vector or a finite-difference vector. Along the
first pathline segment from State 1 to State A, where  is held constant,  and

. Alternately, along the second pathline segment from State A to State 2,
where  is held constant,  and . Along the entire upper-step
pathline . Integration of the parameterized total-differential along the upper-step
pathline can then be simplified as presented in Equation 24.

(24)

The parameterized transformation matrices within Equation 24 are formed by substituting
 and  from Equations 20 and 21 into Equations 6, 7, 8 and 11. These interpolation

derivatives, which are products of linear parameterized variables, are relatively simple. Since one
parameterized argument is fixed along each of the upper-step pathline segments, the degree of
non-linearity is one order lower than those defined along the direct integration pathline. Solution
of Equation 24 is then straightforward, and many DEs may be obtained. The three DEs most
easily obtained using the upper-step integration pathline are presented in Equation 25.

(25)

The three DEs in Equation 25 are similar to the single expansion in Equation 19; they are each
combinations of transformation matrices and higher-order derivatives. Within Equation 25, the
interpolation derivatives with respect to  are fixed at ; the logical-coordinates vary along the
upper-step pathline segment, where  is fixed at State 2. Similarly, the field-transformation
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matrix, , is always evaluated at ; the cell-vertex vector varies along the upper-step
pathline segment, where  is fixed at State 1. In contrast, the coordinate-transformation matrix,

, is evaluated at either  and , or their average .

Lower-Step Integration Pathline
The third pathline used to solve Equation 15 is also comprised of two line-segments between

State 1 and State 2. The first pathline segment is a line of constant  from State 1 to State B.
See Figure 3. State B combines State 2 logical-coordinates and a State 1 cell-vertex vector:

. The second pathline segment is a line of constant  from State B to State 2.
These two pathline segments form a lower-step in the  plane. These parameterized
coordinates are presented in Equations 26 and 27.

(26)

(27)

 Integration of the non-parameterized total-differential can be rewritten to simulate the lower-
step integration pathline as presented in Equation 28.

(28)

Using the lower-step pathline, integration of the parameterized version of Equation 28 is
represented in Equation 29, where the interpolation derivatives are appropriately labeled.
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(29)

Along each segment of the lower-step integration pathline, one of the parameterized
arguments is held constant, while the others vary linearly between end-points. Derivatives of the
parameterized arguments are then either the null vector or a finite-difference vector. Along the
first pathline segment from State 1 to State B, where  is held constant,  and

. Alternately, along the second pathline segment from State B to State 2, where
 is held constant,  and . Along the entire lower-step pathline

. Integration of the parameterized total-differential along the lower-step pathline
can then be simplified as presented in Equation 30.

(30)

The parameterized transformation matrices in Equation 30 are formed by substituting 
and  from Equations 26 and 27 in Equations 6, 7, 8 and 11. Solution of Equation 30 is then
straightforward, and many DEs may be obtained. The three DEs most easily obtained using the
lower-step integration pathline are presented in Equation 31.
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The DEs obtained using the lower-step pathline, Equation 31, are similar to those obtained
using the upper-step pathline, Equation 25. The arguments in these two solution sets, however,
are defined at opposite end-points; the upper and lower-step integration pathlines are mirror
images. Within Equation 31, the interpolation derivatives with respect to  are always evaluated
at , and the field-transformation matrix, , is always evaluated at . In contrast, the
coordinate-transformation matrix,  is evaluated at either  or , or their average .

Integration Summary
Seven DEs for tri-linear reconstruction fields, developed using the total-differential method,

were presented in Equations 19, 25 and 31. One of these new expansions, the second variant in
Equation 25, is identical to the single DE previously developed for tri-linear interpolation using
the finite-difference method [5-7]. Obtaining a DE using the finite-difference method, however,
required a-priori knowledge of the solution. In contrast, integration of the interpolant’s total-
differential is mathematically well founded, and DEs are obtained without prior knowledge of the
solution. Thus, the total-differential method represents a general technique for developing DEs.

Demonstration Expansion

Each of the seven DEs presented above were tested for their ability to accurately predict the
change in a tri-linear reconstruction field based upon hexahedral cells. Each DE was tested for the
reconstruction of two scalar continuum fields: one linear and one non-linear scalar function.
Within these two reconstruction fields, each DE was tested using three expansions: one in the
same cell, a second between adjoining cells and a third between non-contiguous cells. This set of
example problems, therefore, included six reconstruction-field expansions. All seven DEs exactly
predicted the change in the tri-linear reconstruction field for all six example problems.

For demonstration purposes, one of the six DE example problems is detailed below. This
demonstration expansion was a challenging test problem; the expansion extended through the
non-linear continuum’s reconstruction field and, more importantly, the expansion end-points
were located within non-contiguous grid cells. The DE used for this demonstration was presented
in Equation 19 for a vector field, but it is modified in Equation 32 for a scalar function, .

(32)
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Reconstructed Continuum Field
The demonstration expansion’s 3-D computational domain was a cube discretized into non-

orthogonal hexahedral cells. The scalar continuum field, , applied within this cubic volume
was the product of three identically-formed cosine functions as presented in Equation 33.

(33)

This non-linear continuum field was mapped onto the discrete grid points, , and
Equation 33 was tuned to provide one wave-form along each coordinate direction: .

Discrete-Expansion State Variables
DEs describe the change in a reconstruction field between two expansion end-points, State 1

and State 2. Each end-point is the collection of ,  and  vectors that form a consistent set
of values as defined by  where . The reconstructed field value at State 1
and State 2 can then be evaluated from this data. For the present test problem, the two expansion
end-points, and their respective non-contiguous grid cells, are defined in Equations 34 and 35.
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One distinguishing characteristic of Equation 32 is that it includes interpolation derivatives
that are evaluated at  and . For the present test problem,
the average logical-coordinate and cell-vertex vectors are presented in Equation 36.

(36)

The first-order interpolation derivatives in Equation 32 are scaled by finite-difference vectors:
 and . In contrast, the higher-order derivatives are multiplied by

various combinations of the scalar differences ,  and . For this test problem, the finite-
difference vectors, and the DE’s exact solution , are presented in Equation 37.

(37)

Interpolation Derivatives
The DE in Equation 32 includes various derivatives of  with respect to  and .

The coordinate-transformation matrix, , was presented in Equation 5, and its elements
were defined in Equations 6, 7 and 8 as functions of generic vectors  and . In contrast,

 in Equation 32 is evaluated with average logical-coordinates and cell-vertices,  and .
The three second-order derivatives of  with respect to ,  and , evaluated with  and
cell-vertex finite-differences, , are presented in Equations 38, 39 and 40.
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(39)

(40)

The third-order derivative of  with respect to ,  and , evaluated with an average
cell-vertex vector, , is the signed summation of cell-vertex values as presented in Equation 41.

(41)

The field-transformation matrix, , was presented in Equation 9, and its elements
were defined in Equations 10 and 11 as functions of a generic  vector. In contrast,  in
Equation 32 is evaluated at the average logical-coordinates, . The product of this transformation
matrix with the cell-vertex finite-difference vector, , is presented Equation 42.

(42)

Discrete-Expansion Evaluation
The DE in Equation 32, and all other DE variants for tri-linear reconstruction fields, were

defined above analytically. The demonstration expansion’s end-points were defined in Equations
34 and 35. The end-point’s average and finite-difference vectors, used to evaluate and scale the
interpolation derivatives in Equation 32, were defined in Equations 36 and 37. The algebraic form
of Equation 32, including matrices, vectors and their products, is presented in Equation 43.
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(43)

As shown in Equation 43, the DE in Equation 32 exactly predicts the tri-linear reconstruction
field’s change defined in Equation 37: . As noted above, five other problems
were also successfully conducted using Equation 32 within reconstruction fields of linear and
non-linear continuum functions. Moreover, Equation 32 is one of many DE variants for tri-linear
reconstruction fields. This test problem, therefore, demonstrates that the seven DEs presented in
this report are valid expansions of tri-linear interpolants across hexahedron cell boundaries.

Summary

The objective was to develop discrete-expansions (DE) for tri-linear reconstruction fields
based upon hexahedron cells. Reconstruction fields approximate a continuum using piece-wise,
cell-based interpolation throughout the grid. DEs remedy the mathematical incompatibility
between a Taylor’s series expansion (TSE) and multi-linear reconstruction fields. Indeed, DEs
accurately model a reconstruction field’s change throughout a discretized domain. Seven new
DEs were developed by parametrically integrating the tri-linear interpolant’s total-differential
between two positions located in separate cells. One of the new DEs, extending between non-
contiguous cells, was demonstrated to exactly predict the change in the tri-linear reconstruction of
a non-linear continuum. Together with previous efforts [5-13], a full set of DEs is now available
for the most commonly used 1-D, 2-D and 3-D linear and multi-linear reconstruction fields.
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